Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## catena-Poly[[[agua(pyridine-4-carboxylato- $\kappa N$ )silver(I)]- $\mu$ -hexamethylenetetraamine- $\kappa^2 N:N'$ ] dihydrate]

### Dajun Sun,<sup>a</sup> Living Han<sup>b\*</sup> and Hu Zang<sup>c</sup>

<sup>a</sup>Department of Vascular Surgery, The China–Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China, <sup>b</sup>Department of Gynecology, The Second Hospital of Jilin University, Changchun 130041, People's Republic of China, and <sup>c</sup>Department of Orthopedics, The China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China Correspondence e-mail: drhanly2010@163.com

Received 23 November 2010; accepted 2 December 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.016; wR factor = 0.041; data-to-parameter ratio = 10.5.

In the title compound,  $\{[Ag(C_6H_4NO_2)(C_6H_{12}N_4)(H_2O)]$ .  $2H_2O_{n}$ , the Ag<sup>I</sup> atom shows a distorted triangular pyramidal geometry,, formed by two N atoms from two hexamethylenetetraamine (hmt) ligands and one N atom from a pyridine-4carboxylate (4-pdc) ligand and one water molecule. The hmt ligands bridge the Ag atoms, forming a chain along [001]. The carboxylate group of the 4-pdc ligand is uncoordinated. O-H...O hydrogen bonds between the water molecules and carboxylate groups stabilize the structure.

#### **Related literature**

For general background to the design and synthesis of coordination polymers, see: Eddaoudi et al. (2001).



#### **Experimental**

Crystal data [Ag(C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>)(C<sub>6</sub>H<sub>12</sub>N<sub>4</sub>)(H<sub>2</sub>O)]-- $2H_2O$  $M_{r} = 424.22$ Orthorhombic, Pna21 a = 11.8271 (5) Å

b = 13.2122 (5) Å c = 10.2560 (4) Å V = 1602.62 (11) Å<sup>3</sup> Z = 4Mo  $K\alpha$  radiation

metal-organic compounds

 $0.24 \times 0.20 \times 0.19 \text{ mm}$ 

 $\mu = 1.29 \text{ mm}^{-1}$ T = 293 K

#### Data collection

Bruker APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\rm min}=0.747,\;T_{\rm max}=0.792$ 

| Refinement                      |                       |
|---------------------------------|-----------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.016$ | H at                  |
| $wR(F^2) = 0.041$               | in                    |
| S = 1.08                        | re                    |
| 2380 reflections                | $\Delta \rho_{\rm m}$ |
| 226 parameters                  | $\Delta \rho_{\rm m}$ |

2347 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.016$ 

7849 measured reflections

2380 independent reflections

toms treated by a mixture of dependent and constrained efinement  $_{\rm max} = 0.20 \ e \ {\rm \AA}^{-3}$  $\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 876 Friedel pairs Flack parameter: 0.01 (2)

#### Table 1

10 restraints

Selected bond lengths (Å).

| Ag1-N1 | 2.287 (2) | $\substack{\text{Ag1}-\text{N5}^{\text{i}}\\\text{Ag1}-\text{O1}W}$ | 2.306 (2) |
|--------|-----------|---------------------------------------------------------------------|-----------|
| Ag1-N2 | 2.256 (2) |                                                                     | 2.673 (2) |
|        |           |                                                                     |           |

Symmetry code: (i) -x, -y,  $z + \frac{1}{2}$ .

#### Table 2 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$                           | D-H                  | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-------------------------------------------------------|----------------------|-------------------------|------------------------|--------------------------------------|
| $O1W - H1A \cdots O2W^{ii}$                           | 0.85(3)              | 1.91 (3)                | 2.743 (3)              | 169 (3)<br>157 (2)                   |
| $O1W = H1B \cdots O1$<br>$O2W = H2A \cdots O2$        | 0.83(1)<br>0.84(1)   | 1.91(2)<br>1.88(1)      | 2.714 (2)<br>2.722 (3) | 137 (3)<br>173 (3)                   |
| $O2W - H2B \cdots O3W^{v}$ $O3W - H3A \cdots O1W^{v}$ | 0.84 (3)<br>0.85 (1) | 1.99 (3)<br>1.95 (1)    | 2.787 (3)<br>2.788 (3) | 161 (3)<br>169 (3)                   |
| $O3W-H3B\cdots O1$                                    | 0.85 (1)             | 1.89 (1)                | 2.728 (2)              | 169 (3)                              |

Symmetry codes: (ii)  $x - \frac{1}{2}, -y + \frac{1}{2}, z$ ; (iii)  $-x + 1, -y, z - \frac{1}{2}$ ; (iv)  $-x + \frac{3}{2}, y + \frac{1}{2}, z - \frac{1}{2}$ ; (v)  $-x + \frac{1}{2}, y - \frac{1}{2}, z + \frac{1}{2}$ 

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

The authors thank the China-Japan Union Hospital of Jilin University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2384).

#### References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2011). E67, m47 [doi:10.1107/S1600536810050452]

# *catena*-Poly[[[aqua(pyridine-4-carboxylato- $\kappa N$ )silver(I)]- $\mu$ -hexamethylenetetraamine- $\kappa^2 N:N'$ ] di-hydrate]

### D. Sun, L. Han and H. Zang

#### Comment

The design and synthesis of coordination polymers have been a research field of rapid expansion not only because of their fascinating structures, but also owing to their interesting properties as new functional materials of tremendous potential applications in molecular recognition, ion-exchange, and catalysis for reactions (Eddaoudi *et al.*, 2001). In this work, the reaction of pyridine-4-carboxylatic acid (4-Hpdc) and hexamethylenetetraamine (hmt) with Ag<sup>I</sup> ion yielded a new coordination polymer.

As shown in Fig. 1, the asymmetric unit of the title compound contains one Ag<sup>I</sup> atom, one 4-pdc ligand, one hmt ligand, one coordinated water molecule and two uncoordinated water molecules. The Ag1 atom shows a distorted triangle pyramidal geometry, completed by three N atoms from two hmt ligands and one 4-pdc ligand and one O atom from a water molecule. The hmt ligands bridge the Ag atoms, forming a one-dimensional chain. The carboxylate group of the 4-pdc ligand is uncoordinated. O—H···O hydrogen bonds between the water molecules and carboxylate groups stabilize the structure.

#### Experimental

A mixture of 4-Hpdc (0.615 g, 0.5 mmol), Ag(NO<sub>3</sub>)<sub>2</sub> (0.085 g, 0.5 mmol) and hmt (0.070 g, 0.5 mmol) in water was heated at 150°C in a Teflon-lined stainless steel autoclave for 5 d. The reaction system was then slowly cooled to room temperature. Crystals suitable for X-ray diffraction analysis were collected by filtration.

#### Refinement

C-bound H atoms were positioned geometrically and refined using a riding mode, with C—H = 0.93 and 0.97 Å and  $U_{iso}(H)$ =  $1.2U_{eq}(C)$ . The water H atoms were located in a difference Fourier map and refined with restraints of O—H = 0.85 (1) and H···H = 1.38 (1) Å and  $U_{iso}(H) = 1.5U_{eq}(O)$ .

#### **Figures**



Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) -x, -y, z+1/2].



Fig. 2. View of the chain structure in the title compound.

# $catena - Poly[[[aqua(pyridine-4-carboxylato-\kappa N)silver(I)] - \mu - hexamethylenetetraamine-\kappa^2 N: N'] dihydrate]$

F(000) = 864 $D_{\rm x} = 1.758 \ {\rm Mg \ m}^{-3}$ 

 $\theta=3.0{-}26.1^\circ$  $\mu = 1.29 \text{ mm}^{-1}$ T = 293 KBlock, colorless  $0.24 \times 0.20 \times 0.19 \text{ mm}$ 

Mo K $\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 2380 reflections

#### Crystal data

| $[Ag(C_6H_4NO_2)(C_6H_{12}N_4)(H_2O)] \cdot 2H_2O$ |
|----------------------------------------------------|
| $M_r = 424.22$                                     |
| Orthorhombic, <i>Pna</i> 2 <sub>1</sub>            |
| Hall symbol: P 2c -2n                              |
| a = 11.8271 (5) Å                                  |
| b = 13.2122 (5)  Å                                 |
| c = 10.2560 (4)  Å                                 |
| $V = 1602.62 (11) \text{ Å}^3$                     |
| Z = 4                                              |

#### Data collection

| Bruker APEX CCD<br>diffractometer                              | 2380 independent reflections                                              |
|----------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube                       | 2347 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                       | $R_{\rm int} = 0.016$                                                     |
| $\phi$ and $\omega$ scans                                      | $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$ |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -13 \rightarrow 14$                                                  |
| $T_{\min} = 0.747, \ T_{\max} = 0.792$                         | $k = -15 \rightarrow 15$                                                  |
| 7849 measured reflections                                      | $l = -10 \rightarrow 12$                                                  |
|                                                                |                                                                           |

#### Refinement

| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                                                |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                                            |
| $R[F^2 > 2\sigma(F^2)] = 0.016$                                | H atoms treated by a mixture of independent and constrained refinement                              |
| $wR(F^2) = 0.041$                                              | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0231P)^{2} + 0.3127P]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |
| <i>S</i> = 1.08                                                | $(\Delta/\sigma)_{\rm max} < 0.001$                                                                 |
| 2380 reflections                                               | $\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$                                               |
| 226 parameters                                                 | $\Delta \rho_{min} = -0.55 \text{ e } \text{\AA}^{-3}$                                              |
| 10 restraints                                                  | Absolute structure: Flack (1983), 876 Friedel pairs                                                 |
| Primary atom site location: structure-invariant direct methods | Flack parameter: 0.01 (2)                                                                           |

|      | x             | у             | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|------|---------------|---------------|--------------|---------------------------|
| Ag1  | 0.128363 (13) | 0.013803 (11) | 0.15278 (4)  | 0.02268 (7)               |
| C1   | 0.3975 (2)    | 0.04853 (19)  | 0.1327 (3)   | 0.0235 (6)                |
| H1   | 0.3756        | 0.0961        | 0.0708       | 0.028*                    |
| C2   | 0.51160 (18)  | 0.03798 (16)  | 0.1607 (3)   | 0.0213 (5)                |
| H2   | 0.5645        | 0.0788        | 0.1190       | 0.026*                    |
| C3   | 0.5467 (2)    | -0.03375 (17) | 0.2511 (2)   | 0.0180 (5)                |
| C4   | 0.4633 (2)    | -0.09081 (18) | 0.3108 (3)   | 0.0226 (5)                |
| H4   | 0.4826        | -0.1395       | 0.3724       | 0.027*                    |
| C5   | 0.3513 (2)    | -0.0753 (2)   | 0.2786 (3)   | 0.0253 (6)                |
| Н5   | 0.2968        | -0.1145       | 0.3200       | 0.030*                    |
| C6   | 0.6705 (2)    | -0.04864 (19) | 0.2834 (2)   | 0.0195 (5)                |
| C7   | 0.1034 (2)    | -0.1856 (2)   | -0.0106 (3)  | 0.0232 (6)                |
| H7A  | 0.1690        | -0.1589       | -0.0556      | 0.028*                    |
| H7B  | 0.1299        | -0.2228       | 0.0651       | 0.028*                    |
| C8   | -0.0697 (2)   | -0.14419 (19) | 0.0997 (2)   | 0.0214 (5)                |
| H8A  | -0.0454       | -0.1812       | 0.1764       | 0.026*                    |
| H8B  | -0.1189       | -0.0898       | 0.1281       | 0.026*                    |
| С9   | -0.0568 (2)   | -0.29341 (18) | -0.0278 (3)  | 0.0298 (6)                |
| H9A  | -0.0977       | -0.3395       | -0.0842      | 0.036*                    |
| H9B  | -0.0321       | -0.3312       | 0.0482       | 0.036*                    |
| C10  | 0.0045 (2)    | -0.19809 (17) | -0.2111 (2)  | 0.0216 (5)                |
| H10A | -0.0355       | -0.2433       | -0.2696      | 0.026*                    |
| H10B | 0.0696        | -0.1715       | -0.2573      | 0.026*                    |
| C11  | -0.0086 (2)   | -0.04628 (17) | -0.0847 (3)  | 0.0188 (5)                |
| H11A | -0.0572       | 0.0093        | -0.0586      | 0.023*                    |
| H11B | 0.0560        | -0.0179       | -0.1301      | 0.023*                    |
| C12  | -0.1700 (2)   | -0.15591 (19) | -0.1010 (3)  | 0.0207 (5)                |
| H12A | -0.2195       | -0.1012       | -0.0741      | 0.025*                    |
| H12B | -0.2126       | -0.2005       | -0.1579      | 0.025*                    |
| N1   | 0.31739 (18)  | -0.00721 (15) | 0.1914 (2)   | 0.0226 (6)                |
| N2   | 0.03133 (16)  | -0.10028 (15) | 0.0333 (2)   | 0.0175 (4)                |
| N3   | 0.04299 (17)  | -0.25501 (15) | -0.0976 (2)  | 0.0238 (4)                |
| N4   | -0.13283 (16) | -0.21224 (17) | 0.0138 (2)   | 0.0225 (5)                |
| N5   | -0.07120 (15) | -0.11312 (15) | -0.1745 (2)  | 0.0165 (4)                |
| 01   | 0.69699 (14)  | -0.13139 (13) | 0.33372 (19) | 0.0263 (4)                |
| 02   | 0.73760 (15)  | 0.02175 (13)  | 0.2588 (2)   | 0.0294 (5)                |
| O1W  | 0.11516 (14)  | 0.16451 (15)  | -0.0205 (2)  | 0.0254 (4)                |
| H1A  | 0.145 (2)     | 0.2117 (19)   | 0.024 (3)    | 0.038*                    |
| H1B  | 0.161 (2)     | 0.147 (2)     | -0.080(2)    | 0.038*                    |
| O2W  | 0.73929 (16)  | 0.19124 (15)  | 0.1080 (2)   | 0.0344 (5)                |
| H2A  | 0.736 (2)     | 0.1415 (17)   | 0.159 (2)    | 0.052*                    |
| H2B  | 0.777 (3)     | 0.176 (2)     | 0.042 (2)    | 0.052*                    |
| O3W  | 0.60916 (15)  | -0.31522 (14) | 0.4000 (3)   | 0.0330 (5)                |
| H3A  | 0.5402 (12)   | -0.313 (2)    | 0.423 (3)    | 0.049*                    |
| H3B  | 0.629 (2)     | -0.2569 (14)  | 0.373 (4)    | 0.049*                    |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

# Atomic displacement parameters $(Å^2)$

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$      | $U^{23}$      |
|-----|--------------|--------------|--------------|--------------|---------------|---------------|
| Ag1 | 0.01850 (10) | 0.02679 (10) | 0.02274 (11) | -0.00070 (6) | -0.00291 (10) | -0.00824 (17) |
| C1  | 0.0231 (11)  | 0.0237 (11)  | 0.0236 (19)  | 0.0030 (9)   | -0.0032 (12)  | 0.0047 (12)   |
| C2  | 0.0200 (10)  | 0.0214 (10)  | 0.0226 (12)  | -0.0030 (8)  | 0.0014 (14)   | 0.0042 (15)   |
| C3  | 0.0193 (12)  | 0.0163 (11)  | 0.0185 (13)  | 0.0030 (9)   | -0.0024 (10)  | -0.0034 (10)  |
| C4  | 0.0203 (12)  | 0.0220 (12)  | 0.0256 (14)  | 0.0024 (9)   | 0.0013 (11)   | 0.0062 (11)   |
| C5  | 0.0201 (12)  | 0.0263 (14)  | 0.0295 (15)  | -0.0025 (10) | 0.0028 (11)   | 0.0048 (12)   |
| C6  | 0.0177 (12)  | 0.0225 (12)  | 0.0184 (13)  | 0.0003 (10)  | 0.0004 (10)   | 0.0004 (10)   |
| C7  | 0.0202 (12)  | 0.0234 (14)  | 0.0262 (16)  | 0.0054 (10)  | -0.0018 (12)  | -0.0043 (12)  |
| C8  | 0.0206 (12)  | 0.0248 (13)  | 0.0188 (12)  | -0.0023 (10) | 0.0012 (10)   | 0.0021 (10)   |
| C9  | 0.0414 (16)  | 0.0176 (13)  | 0.0305 (15)  | -0.0053 (11) | -0.0100 (13)  | 0.0024 (11)   |
| C10 | 0.0216 (12)  | 0.0223 (12)  | 0.0208 (13)  | 0.0025 (9)   | -0.0006 (11)  | -0.0039 (10)  |
| C11 | 0.0179 (12)  | 0.0157 (10)  | 0.0228 (13)  | -0.0002 (9)  | 0.0000 (10)   | 0.0016 (10)   |
| C12 | 0.0154 (12)  | 0.0257 (13)  | 0.0208 (13)  | -0.0046 (10) | -0.0008 (11)  | 0.0032 (11)   |
| N1  | 0.0158 (10)  | 0.0237 (10)  | 0.0284 (16)  | 0.0010 (8)   | -0.0010 (9)   | -0.0004 (8)   |
| N2  | 0.0132 (9)   | 0.0191 (10)  | 0.0202 (11)  | 0.0020 (8)   | -0.0010 (8)   | -0.0002 (8)   |
| N3  | 0.0290 (11)  | 0.0179 (10)  | 0.0244 (11)  | 0.0055 (9)   | -0.0075 (10)  | -0.0041 (9)   |
| N4  | 0.0232 (11)  | 0.0252 (12)  | 0.0190 (12)  | -0.0077 (8)  | -0.0014 (9)   | 0.0053 (9)    |
| N5  | 0.0150 (10)  | 0.0167 (10)  | 0.0178 (11)  | -0.0032 (8)  | 0.0000 (8)    | 0.0014 (8)    |
| 01  | 0.0186 (8)   | 0.0235 (9)   | 0.0366 (11)  | -0.0002 (7)  | -0.0035 (8)   | 0.0104 (8)    |
| 02  | 0.0190 (9)   | 0.0265 (10)  | 0.0427 (13)  | -0.0057 (7)  | -0.0055 (9)   | 0.0098 (8)    |
| O1W | 0.0196 (9)   | 0.0265 (11)  | 0.0300 (12)  | -0.0025 (7)  | 0.0035 (8)    | -0.0021 (9)   |
| O2W | 0.0317 (10)  | 0.0319 (10)  | 0.0396 (12)  | 0.0047 (8)   | 0.0038 (9)    | 0.0147 (8)    |
| O3W | 0.0219 (9)   | 0.0206 (10)  | 0.0564 (15)  | -0.0012 (7)  | -0.0013 (10)  | 0.0072 (10)   |

## Geometric parameters (Å, °)

| Ag1—N1              | 2.287 (2) | C8—H8B   | 0.9700    |
|---------------------|-----------|----------|-----------|
| Ag1—N2              | 2.256 (2) | C9—N4    | 1.463 (3) |
| Ag1—N5 <sup>i</sup> | 2.306 (2) | C9—N3    | 1.470 (4) |
| Ag1—O1W             | 2.673 (2) | С9—Н9А   | 0.9700    |
| C1—N1               | 1.342 (3) | С9—Н9В   | 0.9700    |
| C1—C2               | 1.387 (3) | C10—N3   | 1.459 (3) |
| С1—Н1               | 0.9300    | C10—N5   | 1.484 (3) |
| C2—C3               | 1.390 (4) | C10—H10A | 0.9700    |
| С2—Н2               | 0.9300    | C10—H10B | 0.9700    |
| C3—C4               | 1.384 (3) | C11—N5   | 1.476 (3) |
| C3—C6               | 1.513 (3) | C11—N2   | 1.482 (3) |
| C4—C5               | 1.380 (3) | C11—H11A | 0.9700    |
| C4—H4               | 0.9300    | C11—H11B | 0.9700    |
| C5—N1               | 1.330 (3) | C12—N4   | 1.461 (3) |
| С5—Н5               | 0.9300    | C12—N5   | 1.501 (3) |
| C6—O2               | 1.249 (3) | C12—H12A | 0.9700    |
| C6—O1               | 1.249 (3) | C12—H12B | 0.9700    |
| C7—N3               | 1.465 (3) | O1W—H1A  | 0.85 (3)  |

| C7—N2                    | 1.483 (3)   | O1W—H1B                  | 0.85(1)     |
|--------------------------|-------------|--------------------------|-------------|
| С7—Н7А                   | 0.9700      | O2W—H2A                  | 0.84 (1)    |
| С7—Н7В                   | 0.9700      | O2W—H2B                  | 0.84 (3)    |
| C8—N4                    | 1.464 (3)   | O3W—H3A                  | 0.85(1)     |
| C8—N2                    | 1.492 (3)   | O3W—H3B                  | 0.85(1)     |
| C8—H8A                   | 0.9700      |                          |             |
| N2—Ag1—N1                | 120.67 (7)  | N3—C10—N5                | 112.10 (19) |
| N2—Ag1—N5 <sup>i</sup>   | 130.41 (7)  | N3—C10—H10A              | 109.2       |
| N1—Ag1—N5 <sup>i</sup>   | 102.86 (7)  | N5-C10-H10A              | 109.2       |
| N2—Ag1—O1W               | 96.13 (7)   | N3—C10—H10B              | 109.2       |
| N1—Ag1—O1W               | 105.23 (6)  | N5-C10-H10B              | 109.2       |
| N5 <sup>i</sup> —Ag1—O1W | 94.00 (7)   | H10A—C10—H10B            | 107.9       |
| N1—C1—C2                 | 122.6 (3)   | N5-C11-N2                | 112.42 (18) |
| N1—C1—H1                 | 118.7       | N5—C11—H11A              | 109.1       |
| C2-C1-H1                 | 118.7       | N2—C11—H11A              | 109.1       |
| C1—C2—C3                 | 119.8 (2)   | N5—C11—H11B              | 109.1       |
| C1—C2—H2                 | 120.1       | N2—C11—H11B              | 109.1       |
| С3—С2—Н2                 | 120.1       | H11A—C11—H11B            | 107.9       |
| C4—C3—C2                 | 116.9 (2)   | N4—C12—N5                | 111.27 (19) |
| C4—C3—C6                 | 121.5 (2)   | N4—C12—H12A              | 109.4       |
| C2—C3—C6                 | 121.6 (2)   | N5-C12-H12A              | 109.4       |
| C5—C4—C3                 | 119.8 (2)   | N4—C12—H12B              | 109.4       |
| C5—C4—H4                 | 120.1       | N5-C12-H12B              | 109.4       |
| C3—C4—H4                 | 120.1       | H12A—C12—H12B            | 108.0       |
| N1C5C4                   | 123.4 (2)   | C5—N1—C1                 | 117.3 (2)   |
| N1—C5—H5                 | 118.3       | C5—N1—Ag1                | 119.57 (17) |
| С4—С5—Н5                 | 118.3       | C1—N1—Ag1                | 123.05 (17) |
| O2—C6—O1                 | 125.1 (2)   | C11—N2—C7                | 107.5 (2)   |
| O2—C6—C3                 | 118.3 (2)   | C11—N2—C8                | 107.76 (18) |
| O1—C6—C3                 | 116.6 (2)   | C7—N2—C8                 | 107.63 (19) |
| N3—C7—N2                 | 112.35 (19) | C11—N2—Ag1               | 106.48 (14) |
| N3—C7—H7A                | 109.1       | C7—N2—Ag1                | 112.35 (14) |
| N2—C7—H7A                | 109.1       | C8—N2—Ag1                | 114.77 (15) |
| N3—C7—H7B                | 109.1       | C10—N3—C7                | 108.4 (2)   |
| N2—C7—H7B                | 109.1       | C10—N3—C9                | 108.41 (19) |
| H7A—C7—H7B               | 107.9       | C7—N3—C9                 | 108.1 (2)   |
| N4—C8—N2                 | 111.90 (19) | C12—N4—C9                | 108.8 (2)   |
| N4—C8—H8A                | 109.2       | C12—N4—C8                | 109.0 (2)   |
| N2—C8—H8A                | 109.2       | C9—N4—C8                 | 108.17 (19) |
| N4—C8—H8B                | 109.2       | C11—N5—C10               | 107.94 (17) |
| N2—C8—H8B                | 109.2       | C11—N5—C12               | 107.64 (19) |
| H8A—C8—H8B               | 107.9       | C10—N5—C12               | 108.15 (19) |
| N4—C9—N3                 | 112.48 (19) | C11—N5—Ag1 <sup>ii</sup> | 106.63 (14) |
| N4—C9—H9A                | 109.1       | C10—N5—Ag1 <sup>ii</sup> | 114.39 (15) |
| N3—C9—H9A                | 109.1       | C12—N5—Ag1 <sup>ii</sup> | 111.83 (14) |
| N4—C9—H9B                | 109.1       | H1A—O1W—H1B              | 108.9 (15)  |
| N3—C9—H9B                | 109.1       | H2A—O2W—H2B              | 110.2 (16)  |

# supplementary materials

| H9A—C9—H9B<br>Symmetry codes: (i) $-x$ , $-y$ , $z+1/2$ ; (ii) $-x$                                                                                    | 107.8<br>x, -y, z-1/2. | НЗА—ОЗW—НЗВ  |              | 108.7 (15) |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|--------------|------------|--|
| Hydrogen-bond geometry (Å, °)                                                                                                                          |                        |              |              |            |  |
| D—H···A                                                                                                                                                | <i>D</i> —Н            | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |  |
| O1W—H1A···O2W <sup>iii</sup>                                                                                                                           | 0.85 (3)               | 1.91 (3)     | 2.743 (3)    | 169 (3)    |  |
| O1W—H1B····O1 <sup>iv</sup>                                                                                                                            | 0.85 (1)               | 1.91 (2)     | 2.714 (2)    | 157 (3)    |  |
| O2W—H2A···O2                                                                                                                                           | 0.84 (1)               | 1.88 (1)     | 2.722 (3)    | 173 (3)    |  |
| $O2W$ — $H2B$ ···O $3W^{v}$                                                                                                                            | 0.84 (3)               | 1.99 (3)     | 2.787 (3)    | 161 (3)    |  |
| O3W—H3A…O1W <sup>vi</sup>                                                                                                                              | 0.85 (1)               | 1.95 (1)     | 2.788 (3)    | 169 (3)    |  |
| O3W—H3B…O1                                                                                                                                             | 0.85(1)                | 1.89(1)      | 2.728 (2)    | 169 (3)    |  |
| Symmetry codes: (iii) $x-1/2$ , $-y+1/2$ , $z$ ; (iv) $-x+1$ , $-y$ , $z-1/2$ ; (v) $-x+3/2$ , $y+1/2$ , $z-1/2$ ; (vi) $-x+1/2$ , $y-1/2$ , $z+1/2$ . |                        |              |              |            |  |



